

Consumer-oriented TCO Optimization for a Private Prosumer

Kai Kappner, Peter Letmathe, Philipp Weidinger

Chair of Management Accounting RWTH Aachen University

UFZ EnergyDays 2018 September 25th, 2018

Problem / Research Question

. . .

What is the TCO_c for different photovoltaic (PV) systems in combination with BES systems in different usage scenarios?

What is the most cost-effective option regarding a PV-BES-system from the user perspective considering German market conditions?

Previous Research

#	References	Business Admin.		Economic	Technical	PV	BES	Miscellaneous		
π	Neicici ellecs	other	TCO	Leononne	reennear		BLU	misochaneous		
1	(Rosen & Madlener 2016)			х				 Changes in market regulations Enable trading of energy for prosumers 		
2	(Rylatt et al. 2013)			Х	Х			 Market model Prosumer is embedded in an aggregator structure 		
3	(Comello & Reichelstein 2016)	х				Х		 Economic efficiency of PV in the U.S. Remuneration system 		
4	(McDowall 2017)				Х	Х	х	Meaning of BES for the autarchy of micro grids		
5	(Bertolini et al. 2016)	Х	Х			Х		Impact of a PV system for micro grids		
6	(Klise 2013)	х	Х			х		 TCO for PV systems in the U.S. Incl. discounted CF 		
7	(Kamankesh & Agelidis 2017)	х		Х		Х		• Optimising the management of the grid with high share of RES and V2G		
8	(Vosoogh et al. 2014)	Х		Х	Х	Х	х	 Optimising the energy flow in a micro grid 		
9	Kappner et al.	х	х	х	х	х	х	 Calculating the profitability of a PV system with BES Real data sets Taking into account technical restrictions 		

4

Consumer-oriented TCO Optimization for a Private Prosumer | Kappner / Letmathe / Weidinger | Chair of Management Accounting | RWTH Aachen University | September 25th, 2018 | 5

6

Consumer-oriented TCO Optimization for a Private Prosumer | Kappner / Letmathe / Weidinger | Chair of Management Accounting | RWTH Aachen University | September 25th, 2018 | **RWTHAACHEN** UNIVERSITY

7

RMT

8

RMT

9

RNNTH

Power Consumption:

- Rule: first own produced energy, second supplied energy
- Price per kWh supplied energy: 0.29 €/kWh

Calculation of NPV and Annuity

Calculation NPV

 $C_{NPV} = C_{Capex} + \sum_{t=1}^{T} \frac{C_{Opex,t}}{(1+i)^t}$

Calculation Annuity $C_{TCO_C} = C_{NPV} \frac{(1+i)^{t} \cdot i}{(1+i)^{t} - 1}$

Symbol	Explanation	Content					
C _{Capex}	Capital Expenditure	PV System + Battery Energy Storage					
C _{Opex}	Operational Expenditure	Electricity Cost + Feed-in Remuneration + Maintenance + Insurance + Financing					
C _{TCOC}	Annual Consumer-oriented Total Cost of Ownership	Evenly Distributed Costs per year					
i	Interest Rate	3 %					
C _{NPV}	Net Present Value	Cumulated Costs discounted to year 0					
t	Period	1-20					
Т	Period under Review	20 years					
TCO _c	Consumer-oriented Total Cost of Ownership						

Results

Scenario Analysis

		Size of PV System [kW _p]									
		no PV	4.88			7.32			9.76		
		Annuity [€]	Battery [kWh]	Annuity [€]	Self- sufficienc y	Battery [kWh]	Annuity [€]	Self- sufficienc y	Battery [kWh]	Annuity [€]	Self- sufficienc y
ehold Size	1 Person 1714 kWh	-511.97	0	-387.24	47.37%	0	-302.07	49.58%	0	-219.71	50.83%
			6	-776.95	86.20%	6	-695.09	91.54%	6	-622.19	94.80%
			10	-992.72	87.36%	10	-909.50	92.61%	10	-836.6	95.83%
			16	-1258.86	88.16%	16	-1174.80	93.31%	16	-1102.14	96.53%
	2 Persons 2812 kWh	-839.94	0	-640.39	43.82%	0	-547.94	46.79%	0	-461.07	48.54%
			6	-988.44	75.86%	6	-887.97	82.84%	6	-802.93	86.85%
			10	-1200.98	77.35%	10	-1098.79	84.79%	10	-1011.34	88.96%
			16	-1465.53	77.84%	16	-1362.60	85.67%	16	-1274.04	90.28%
	3 Persons 3704 kWh	-1106.38	0	852.65	41.40%	0	-752.98	44.84%	0	661.92	46.87%
Ň			6	-1177.93	69.03%	6	-1062.26	76.69%	6	-968.14	81.18%
Н			10	-1387.15	70.63%	10	-1268.25	79.17%	10	-1169.87	84.08%
			16	-1649.99	71.45%	16	-1529.78	80.29%	16	-1430.33	85.43%
	4 Persons 4432 kWh	-1323.84	0	-1029.69	39.67%	0	-923.41	43.41%	0	-828.44	45.64%
			6	-1341.68	64.45%	6	-1215.03	72.41%	6	-1113.96	76.93%
			10	-1545.62	66.22%	10	-1415.10	75.08%	10	-1307.67	80.46%
			16	-1805.95	67.44%	16	-1674.87	76.24%	16	-1565.92	81.81%

Key Findings

- Installing a PV system always creates a **financial added value**.
- The choice of the largest possible PV system is always the best alternative (up to 10 kW_p). Nevertheless, regardless of the size of the household, any size of a PV system is inancially worthwhile.
- The use of a BES significantly increases the self-sufficiency rate of a household, but **does not achieve a financial advantage** in any constellation.
- In order to make the use of BESs financially advantageous, the acquisition costs of BESs must be reduced and the household load increased.
- The sector coupling offers possibilities for extending the load: integration of CHPs and EVs

Thank you very much for your attention

Kai Kappner (kappner@controlling.rwth-aachen.de) Philipp Weidinger (weidinger@controlling.rwth-aachen.de)

Chair of Management Accounting Faculty of Business and Economics RWTH Aachen University Templergraben 64 D-52062 Aachen

